>If you've ever experienced the disappointment of ending a dive too soon for lack of breathing gas or, worse, had to make a hurried ascent because you ran out of air, it may surprise you to learn that your predicament was entirely predictable. With a little planning and some basic calculations, you can estimate how much breathing gas you will need to complete a dive and then take steps to ensure an adequate supply. It's a process that technical divers live by and one that can also be applied to basic open-water diving.
>You can determine your SAC on your next dive. When you enter the water, descend to a depth where you have a large set reference point like a smooth section of ocean bottom or the deck of a ship. Fine-tune your buoyancy, then record your bottom time, the depth and the pressure reading on your submersible pressure gauge (SPG). Swim at a comfortable pace for 10 minutes, maintaining a stable depth. At the end of your timed swim, record the pressure reading on your SPG again.
>After your dive, get a sheet of paper, pencil and a calculator. The first step in determining your SAC is calculating how much gas you used for each minute of your timed swim. For example, let's assume your dive was at 33 feet, or 10 meters; that your test segment was 10 minutes in duration and that you used 600 psi or 40 bar of pressure. [Author's note: 600 psi actually equals 41.38 bar. We use 40 bar to simplify the math examples.] So we start by dividing the total gas used by the number of minutes in the segment:
- Imperial: 600 ÷ 10 = 60 psi per minute
- Metric: 40 ÷ 10 = 4 bar per minute
- Imperial: Depth (in feet of sea water) ÷ 33 + 1 = atmospheres absolute of pressure (ATA)
- Metric: Depth (in meters of sea water) ÷ 10 + 1 = atmospheres absolute of pressure (ATA)
- 33 feet ÷ 33 + 1 = 2 ATA. If you use metric: 10 meters ÷ 10 + 1 = 2 ATA
- Imperial: 60 psi ÷ 2 ATA = 30; so our SAC is 30 psi per minute
- Metric: 4 bar ÷ 2 ATA = 2; so our SAC is 2 bar per minute
- Imperial: 30 psi x 4 ATA = 120 psi per minute at depth
- Metric: 2 bar x 4 ATA = 8 bar per minute at depth
>So if you start the dive with a full cylinder at 3,000 psi, or 206 bar, the planning math looks like this:
- Imperial: 3,000 psi ÷ 3 = 1,000 psi as 1/3 of our cylinder. 3,000 – 1,000 = 2,000 psi of useable gas. A rate of 120 psi per minute means you'll have approximately 16.6 minutes of gas at depth (2,000 ÷ 120 = 16.6).
- Metric: 206 bar ÷ 3 = 68.7 bar as 1/3 of our cylinder. 206 – 69 = 137 bar of useable gas. 137 ÷ 8 = 17.1 minutes of dive time.
>The first step is to find out how much gas volume is contained in each psi of gas in the cylinder used to determine our SAC. We call this number a cylinder conversion factor (CF). To calculate the CF, divide the rated volume of the cylinder in cubic feet by the rated pressure of the cylinder (CF volume ÷ rated psi).
>So for an aluminum 80 (the cylinder used in our test dive scenario) the CF is .0267 (80 ÷ 3,000 = .0267).
>To convert our SAC (30 psi per minute) to an RMV we need to multiply the pressure of gas used by the CF of the cylinder.
- RMV = 30 x 0.0267 = 0.8 cubic feet per minute
- RMV = 2 x 11 = 22 liters per minute
>Let's assume a 108-cubic-foot (17-liter) cylinder rated at 2,640 psi (180 bar) on our same dive to 99 feet (30 meters) or 4 ATA of pressure.
>Imperial system
- 108 cubic feet ÷ 3 = 36 cf. 108 – 36 = 72 cubic feet of useable gas volume
- 0.8 x 4 = 3.2 RMV in cubic feet
- 72 ÷ 3.2 = 22.5 minutes of available dive time Metric system
- 17 ÷ 3 = 5.6; 17 – 5.6 = 11.3 liters of useable water volume
- 11.3 x 180 bar of rated pressure = 2,034 liters of usable gas
- 22 x 4 = 88 RMV in liters
- 2,034 ÷ 88 = 23 minutes of available dive time
>Streamline Your Gear
>When moving through a medium that is 800 times denser than air, even small efficiencies can reap big benefits. Avoid "danglies" by eliminating all unnecessary gear and tucking what you do need inside pockets. Secure gauges and your octopus regulator to your BCD, and route hoses close to your body. When you fin through the water, fold your arms together or clasp your hands behind your back while keeping your fins inside the slipstream created by your tank and torso.
>Fine Tune Your Buoyancy and Trim
>The air cell in most BCDs is located at or near the diver's shoulders, and the weight is located at or near the diver's waist. This alignment of forces pulls the shoulders toward the surface and pushes the lower body toward the bottom, giving the diver the swimming profile of a Mack truck. The more weight you carry, the more this effect is exaggerated. Take a buoyancy course or work with an instructor to fine-tune your weighting, and redistribute your ballast load to achieve a proper horizontal swimming position. Bonus: You'll be adding less air to your BCD to offset ballast, which means you'll have more in the tank to breathe.
>Stop the Leaks
>On every dive, scan your gear for air leaks. Small leaks from your octopus, gauge console or BCD inflator can add up over the course of a dive and, as a matter of safety, indicate gear long overdue for service. Another hidden air thief: a leaky mask. Every time you stop to clear water from your mask, you're wasting breathing gas.
>© Alert Diver — Winter 2010